llmstory
Grade 12 Mathematics Final Exam: Pre-Calculus & Calculus
1.

Which of the following statements about the function f(x)=4sin(3xπ)+2f(x) = 4\sin(3x - \pi) + 2 is true?

Select one option
2.

Simplify the expression: cos2θsin2θtanθ\frac{\cos^2\theta - \sin^2\theta}{\tan\theta}.

Select one option
3.

Solve the equation 2cosx+1=02\cos x + 1 = 0 for xx in the interval [0,2π)[0, 2\pi).

Select one option
4.

Which of the following is the inverse of the function f(x)=3x12f(x) = 3^{x-1} - 2?

Select one option
5.

What is the domain of the function g(x)=x29g(x) = \sqrt{x^2 - 9}?

Select one option
6.

What is the horizontal asymptote of the rational function h(x)=2x2+3x15x37x+2h(x) = \frac{2x^2 + 3x - 1}{5x^3 - 7x + 2}?

Select one option
7.

Given vectors u=1,2,3\vec{u} = \langle 1, 2, 3 \rangle and v=3,1,4\vec{v} = \langle 3, -1, 4 \rangle, what is u+v\vec{u} + \vec{v}?

Select one option
8.

If a=3,4\vec{a} = \langle 3, -4 \rangle and b=2,1\vec{b} = \langle 2, 1 \rangle, what is the dot product ab\vec{a} \cdot \vec{b}?

Select one option
9.

Evaluate limx0sin(5x)x\lim_{x \to 0} \frac{\sin(5x)}{x}.

Select one option
10.

For what value of xx is the function f(x)=x29x3f(x) = \frac{x^2 - 9}{x - 3} discontinuous?

Select one option
11.

Evaluate limx(1+2x)x\lim_{x \to \infty} \left(1 + \frac{2}{x}\right)^x.

Select one option
12.

Find the derivative of f(x)=x43x2+5f(x) = x^4 - 3x^2 + 5.

Select one option
13.

If g(x)=cos(x2)g(x) = \cos(x^2), what is g(x)g'(x)?

Select one option
14.

Consider a function f(x)f(x) where f(x)=(x1)(x3)f'(x) = (x-1)(x-3). Which of the following describes the local extrema of f(x)f(x)?

Select one option
15.

Evaluate e2xdx\int e^{2x} dx.

Select one option
16.

Evaluate 01(4x32x)dx\int_0^1 (4x^3 - 2x) dx.

Select one option
17.

What does the definite integral abf(x)dx\int_a^b f(x) dx represent?

Select one option
18.

Solve for xx: e2x=9e^{2x} = 9.

Select one option
19.

For the function f(x)=xx24f(x) = \frac{x}{x^2 - 4}, determine its domain, equations of all asymptotes, intercepts, and identify any holes in the graph. Do not sketch the graph.

20.

Solve the trigonometric equation 2sin2x3sinx+1=02\sin^2 x - 3\sin x + 1 = 0 for xx in the interval [0,2π)[0, 2\pi). Show all steps.

21.

Given vectors u=1,2,3\vec{u} = \langle 1, 2, 3 \rangle and v=2,1,2\vec{v} = \langle 2, 1, 2 \rangle. (a) Find the angle between u\vec{u} and v\vec{v} (in radians or degrees). (b) Find the projection of u\vec{u} onto v\vec{v}, i.e., projvu\text{proj}_{\vec{v}}\vec{u}.

22.

A rectangular piece of cardboard is 24 cm24 \text{ cm} long and 16 cm16 \text{ cm} wide. Equal squares are cut from each corner and the sides are folded up to form an open box. Find the dimensions of the box that will maximize its volume. What is the maximum volume?

23.

A 10 m10 \text{ m} ladder is leaning against a vertical wall. The base of the ladder is pulled away from the wall at a rate of 0.5 m/s0.5 \text{ m/s}. How fast is the angle between the ladder and the ground changing when the base of the ladder is 6 m6 \text{ m} from the wall?

24.

Find the area of the region bounded by the curves y=x2y = x^2 and y=x+2y = x + 2. Show all steps, including finding intersection points.

25.

Prove the trigonometric identity: 1+cos(2x)sin(2x)=cotx\frac{1 + \cos(2x)}{\sin(2x)} = \cot x. Show all steps and justify each one.

26.

Using the epsilon-delta definition of a limit, prove that limx2x2=4\lim_{x \to 2} x^2 = 4.

Copyright © 2025 llmstory.comPrivacy PolicyTerms of Service