If two parallel lines are intersected by a transversal, which of the following pairs of angles are always equal?
In , if and , what is the measure of ?
Which of the following is NOT a valid criterion for proving triangle congruence?
If two triangles are similar and the ratio of their corresponding sides is , what is the ratio of their areas?
Which property is unique to a rhombus among parallelograms?
In an isosceles trapezoid, which of the following statements is true?
What is the area of a circle with a radius of ? Use .
The volume of a cylinder with radius and height is given by:
An angle inscribed in a semicircle measures:
A line tangent to a circle is perpendicular to the radius drawn to the point of tangency. This angle is always:
In a right-angled triangle, if the opposite side to an angle is units and the hypotenuse is units, what is ?
What is the exact value of ?
<line x1="190" y1="20" x2="100" y2="130" stroke="black" stroke-width="1"/>
<line x1="10" y1="20" x2="100" y2="130" stroke="black" stroke-width="1"/>
<circle cx="100" cy="130" r="2" fill="black"/>
<text x="95" y="145" font-size="12">E</text>
<path d="M185 20 L190 20 L190 25" fill="none" stroke="black"/>
<text x="170" y="30" font-size="12">130°</text>
<path d="M105 130 L100 130 L100 125" fill="none" stroke="black"/>
<text x="110" y="120" font-size="12">80°</text>
</svg>
In the diagram below, line is parallel to line . If and , find the measure of . Show your steps.
<line x1="40" y1="75" x2="160" y2="75" stroke="black" stroke-width="1"/>
<text x="30" y="70" font-size="12">D</text>
<text x="165" y="70" font-size="12">E</text>
<text x="50" y="45" font-size="10">4</text> <!-- AD -->
<text x="50" y="110" font-size="10">6</text> <!-- DB -->
<text x="140" y="45" font-size="10">5</text> <!-- AE -->
<text x="140" y="110" font-size="10">x</text> <!-- EC -->
</svg>
In , . If , , and , find the length of . Show your work.
The vertices of a parallelogram are , , . Find the coordinates of vertex . Show your method.
<path d="M 20 60 A 80 80 0 0 1 180 60" fill="none" stroke="black" stroke-width="1"/>
</svg>
A design consists of a rectangle with dimensions by with a semicircle attached to one of its sides. Calculate the total area of the design. Use .
A solid toy is in the form of a hemisphere surmounted by a cone. The radius of the hemisphere is and the total height of the toy is . Find the volume of the toy. (Use )
A ladder long reaches a window above the ground. Find the angle of elevation of the ladder to the nearest degree. (You may use a calculator for trigonometric values).
<line x1="20" y1="20" x2="180" y2="130" stroke="black" stroke-width="1"/>
<!-- Point C is the midpoint of AE based on AC=CE -->
<circle cx="100" cy="75" r="2" fill="black"/>
<text x="95" y="70" font-size="12">C</text>
<line x1="80" y1="20" x2="120" y2="130" stroke="black" stroke-width="1"/>
</svg>
Given: , and . Prove: . Provide a formal two-column proof (Statements and Reasons).
<line x1="10" y1="110" x2="190" y2="110" stroke="black" stroke-width="1"/>
<text x="5" y="105" font-size="12">C</text>
<text x="195" y="105" font-size="12">D</text>
<line x1="50" y1="10" x2="150" y2="140" stroke="black" stroke-width="1"/>
<text x="45" y="5" font-size="12">E</text>
<text x="155" y="145" font-size="12">F</text>
<circle cx="80" cy="40" r="2" fill="black"/>
<text x="75" y="30" font-size="12">G</text>
<circle cx="120" cy="110" r="2" fill="black"/>
<text x="115" y="100" font-size="12">H</text>
<path d="M85 40 L80 40 L80 45" fill="none" stroke="black"/>
<text x="90" y="50" font-size="12">1</text>
<path d="M125 110 L120 110 L120 105" fill="none" stroke="black"/>
<text x="130" y="100" font-size="12">2</text>
</svg>
Given: Line and are intersected by transversal at and respectively. . Prove: . Provide a formal two-column proof (Statements and Reasons).
<line x1="20" y1="75" x2="180" y2="75" stroke="black" stroke-width="1"/>
<line x1="100" y1="20" x2="100" y2="130" stroke="black" stroke-width="1"/>
<circle cx="100" cy="75" r="2" fill="black"/>
<text x="105" y="70" font-size="12">O</text>
</svg>
Given: Quadrilateral where diagonals and bisect each other at . Prove: is a parallelogram. Provide a formal two-column proof (Statements and Reasons).