llmstory
Grade 10 Mathematics Mid-Term Exam (Geometry)
1.

If two parallel lines are intersected by a transversal, which of the following pairs of angles are always equal?

Select one option
2.

In ABC\triangle ABC, if A=50\angle A = 50^\circ and B=70\angle B = 70^\circ, what is the measure of C\angle C?

Select one option
3.

Which of the following is NOT a valid criterion for proving triangle congruence?

Select one option
4.

If two triangles are similar and the ratio of their corresponding sides is 2:32:3, what is the ratio of their areas?

Select one option
5.

Which property is unique to a rhombus among parallelograms?

Select one option
6.

In an isosceles trapezoid, which of the following statements is true?

Select one option
7.

What is the area of a circle with a radius of 7 cm7 \text{ cm}? Use π227\pi \approx \frac{22}{7}.

Select one option
8.

The volume of a cylinder with radius rr and height hh is given by:

Select one option
9.

An angle inscribed in a semicircle measures:

Select one option
10.

A line tangent to a circle is perpendicular to the radius drawn to the point of tangency. This angle is always:

Select one option
11.

In a right-angled triangle, if the opposite side to an angle θ\theta is 66 units and the hypotenuse is 1010 units, what is sinθ\sin \theta?

Select one option
12.

What is the exact value of tan45\tan 45^\circ?

Select one option
A B C D
      <line x1="190" y1="20" x2="100" y2="130" stroke="black" stroke-width="1"/>
      <line x1="10" y1="20" x2="100" y2="130" stroke="black" stroke-width="1"/>
      <circle cx="100" cy="130" r="2" fill="black"/>
      <text x="95" y="145" font-size="12">E</text>
      <path d="M185 20 L190 20 L190 25" fill="none" stroke="black"/>
      <text x="170" y="30" font-size="12">130°</text>
      <path d="M105 130 L100 130 L100 125" fill="none" stroke="black"/>
      <text x="110" y="120" font-size="12">80°</text>
    </svg>
13.

In the diagram below, line ABAB is parallel to line CDCD. If ABE=130\angle ABE = 130^\circ and CDE=80\angle CDE = 80^\circ, find the measure of BED\angle BED. Show your steps.

A B C
      <line x1="40" y1="75" x2="160" y2="75" stroke="black" stroke-width="1"/>
      <text x="30" y="70" font-size="12">D</text>
      <text x="165" y="70" font-size="12">E</text>
      <text x="50" y="45" font-size="10">4</text> <!-- AD -->
      <text x="50" y="110" font-size="10">6</text> <!-- DB -->
      <text x="140" y="45" font-size="10">5</text> <!-- AE -->
      <text x="140" y="110" font-size="10">x</text> <!-- EC -->
    </svg>
14.

In ABC\triangle ABC, DEBCDE \parallel BC. If AD=4 cmAD = 4 \text{ cm}, DB=6 cmDB = 6 \text{ cm}, and AE=5 cmAE = 5 \text{ cm}, find the length of ECEC. Show your work.

15.

The vertices of a parallelogram ABCDABCD are A(1,2)A(1, 2), B(5,2)B(5, 2), C(7,6)C(7, 6). Find the coordinates of vertex DD. Show your method.

8 m 6 m
      <path d="M 20 60 A 80 80 0 0 1 180 60" fill="none" stroke="black" stroke-width="1"/>
    </svg>
16.

A design consists of a rectangle with dimensions 8 m8 \text{ m} by 6 m6 \text{ m} with a semicircle attached to one of its 8 m8 \text{ m} sides. Calculate the total area of the design. Use π=3.14\pi = 3.14.

17.

A solid toy is in the form of a hemisphere surmounted by a cone. The radius of the hemisphere is 3.5 cm3.5 \text{ cm} and the total height of the toy is 9.5 cm9.5 \text{ cm}. Find the volume of the toy. (Use π=227\pi = \frac{22}{7})

18.

A ladder 10 m10 \text{ m} long reaches a window 8 m8 \text{ m} above the ground. Find the angle of elevation of the ladder to the nearest degree. (You may use a calculator for trigonometric values).

A B
D E
      <line x1="20" y1="20" x2="180" y2="130" stroke="black" stroke-width="1"/>
      <!-- Point C is the midpoint of AE based on AC=CE -->
      <circle cx="100" cy="75" r="2" fill="black"/>
      <text x="95" y="70" font-size="12">C</text>
      <line x1="80" y1="20" x2="120" y2="130" stroke="black" stroke-width="1"/>
    </svg>
19.

Given: ABDEAB \parallel DE, and AC=CEAC = CE. Prove: ABCEDC\triangle ABC \cong \triangle EDC. Provide a formal two-column proof (Statements and Reasons).

A B
          <line x1="10" y1="110" x2="190" y2="110" stroke="black" stroke-width="1"/>
          <text x="5" y="105" font-size="12">C</text>
          <text x="195" y="105" font-size="12">D</text>
          <line x1="50" y1="10" x2="150" y2="140" stroke="black" stroke-width="1"/>
          <text x="45" y="5" font-size="12">E</text>
          <text x="155" y="145" font-size="12">F</text>
          <circle cx="80" cy="40" r="2" fill="black"/>
          <text x="75" y="30" font-size="12">G</text>
          <circle cx="120" cy="110" r="2" fill="black"/>
          <text x="115" y="100" font-size="12">H</text>
          <path d="M85 40 L80 40 L80 45" fill="none" stroke="black"/>
          <text x="90" y="50" font-size="12">1</text>
          <path d="M125 110 L120 110 L120 105" fill="none" stroke="black"/>
          <text x="130" y="100" font-size="12">2</text>
        </svg>
20.

Given: Line ABAB and CDCD are intersected by transversal EFEF at GG and HH respectively. AGH=GHD\angle AGH = \angle GHD. Prove: ABCDAB \parallel CD. Provide a formal two-column proof (Statements and Reasons).

A B C D
      <line x1="20" y1="75" x2="180" y2="75" stroke="black" stroke-width="1"/>
      <line x1="100" y1="20" x2="100" y2="130" stroke="black" stroke-width="1"/>
      <circle cx="100" cy="75" r="2" fill="black"/>
      <text x="105" y="70" font-size="12">O</text>
    </svg>
21.

Given: Quadrilateral ABCDABCD where diagonals ACAC and BDBD bisect each other at OO. Prove: ABCDABCD is a parallelogram. Provide a formal two-column proof (Statements and Reasons).

Copyright © 2025 llmstory.comPrivacy PolicyTerms of Service